GEOMETRIC WEYL QUANTIZATION

John b. Moreno barrios \& Pedro De m. Rios

1 Introduction

Following on the quantization by groupoids program as a way to obtain an integral product which would deform the multiplication of the Poisson algebra of functions on a symplectic manifold M as in Weinstein [5]. Me searches a product of the general form

$$
(f g)(z)=\int_{M \times M} f(x) g(y) K(x, y, z) d x d y
$$

with a kernel K_{\hbar}, depending on the deformation parameter \hbar, of the kind $K_{\hbar}(x, y, z)=\hbar^{\operatorname{dimM}} . \exp (i S(x, y, z) / \hbar)$, eventually multiplied by an "amplitude" $A(x, y, z)$, where the function $S(x, y, z)$ could be the symplectic area of a surface whose boundary is the geodesic triangle for which the points x, y and z are the midpoints of its sides, generalizing what is know for $\mathbb{R}^{2 n}$.

In this present work, we will derive such a formula(Moyal-Weyl integral product) for \mathbb{R}^{2} with the euclidian connection and for \mathbb{R}^{2} how a (non-metric) symplectic symmetric space(see [1] for details), by means of geometric quantization of the symplectic groupoid $M \times M$ and its prequantization as described in $[6,3]$.

2 Mathematical Results

Let (M, ω) be a symplectic manifold and let $\hbar \in \mathbb{R}^{+}$be a parameter. Let (Y, θ) be a prequantization of $(M, \omega / \hbar)$, meaning that $\pi: Y \rightarrow M$ is a principal S^{1}-bundle equipped with a connection form θ whose curvature is ω / \hbar. We let $L \rightarrow M$ be the associated complex line bundle over M with connection ∇ and compatible hermitian structure. It follows that we can identify Y with the subset of L of points of length 1 . Now, consider a prequantization of the pair groupoid $M \times M$ the symplectic structure $(\omega,-\omega)$. We let $[L] \rightarrow M \times M$ be the associated complex line bundle with connection and compatible hermitian structure (see [2] for details).

Theorem 2.1. Let the symplectic groupoid $G=\mathbb{R}^{2} \times \overline{\mathbb{R}}^{2}$ of coordinates $\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)$, with which its symplectic form may be written as

$$
\Omega=d x_{1} \wedge d y_{1}-d x_{2} \wedge d y_{2}
$$

If P is a central (real)polarization and F is a trivial (real)polarization of the $\mathbb{R}^{2} \times \overline{\mathbb{R}}^{2}$ such that F and P are nontransverse. Then for the two sections $\alpha \in \Gamma_{F}\left([L] \otimes Q^{F}\right)$ and $\beta \in \Gamma_{P}\left([L] \otimes Q^{P}\right)$

$$
<\alpha, \beta>_{h}=<f, T g>_{L^{2}\left(\mathbb{R}^{2}\right)}, \quad \text { where }
$$

- In the case of the Euclidean plane, we have: $T g\left(x_{1}, x_{2}\right)=(2 \pi \hbar)^{-1} \int_{\mathbb{R}} g\left(\frac{x_{1}-x_{2}}{2}, \xi\right) \exp \left(i \frac{\xi}{\hbar}\left(x_{2}-x_{1}\right)\right) d \xi$
- In the case of the Bieliavsky plane(see [1]) we have:

$$
T g\left(x_{1}, x_{2}\right)=(2 \pi \hbar)^{-1} \int_{\mathbb{R}} g\left(\frac{x_{1}+x_{2}}{2}, \xi\right) \exp \left(2 i \frac{\xi}{\hbar} \sinh \frac{\left(x_{2}-x_{1}\right)}{2}\right) \cosh ^{\frac{1}{2}}\left(\frac{\left(x_{2}-x_{1}\right)}{2}\right) d \xi
$$

- $\alpha=f . s_{0} \otimes \sqrt{d \alpha_{1}}$ and $\beta=$ g.t $t_{0} \otimes \sqrt{d \beta_{1}}$, such that s_{0}, t_{0} are nonvanishing section of L and $\sqrt{d \alpha_{1}}, \sqrt{d \beta_{1}}$ are half-forms on $\mathbb{R}^{2} \times \overline{\mathbb{R}}^{2}$ associated with P, F respectively.
$\bullet<., .>_{h}$ is the pairing of two sections $t \otimes \sqrt{\alpha_{1}} \in \Gamma_{F}\left([L] \otimes Q^{F}\right), s \otimes \sqrt{\beta_{1}} \in \Gamma_{P}\left([L] \otimes Q^{P}\right)$ given by $<t \otimes \sqrt{\alpha_{1}}, s \otimes \sqrt{\beta_{1}}>_{h}=\int(t, s)<\sqrt{\alpha_{1}}, \sqrt{\beta_{1}}>_{P R}$, where (.,.) is the Hermitian metric on $[L]$ and $<., .>_{P R}$ is the pairing of half-forms.

Remark 2.1. If the symplectic groupoid $G=\mathbb{R}^{2} \times \overline{\mathbb{R}}^{2}$ has coordinates $\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)$ the polarization F above is generated for $\left\{\partial y_{1}, \partial y_{2}\right\}$, and the product groupoid is: $\left(x_{1}, y_{1} ; x_{3}, y_{3}\right)=\left(x_{1}, y_{1} ; x_{2}, y_{2}\right) .\left(x_{2}, y_{2} ; x_{3}, y_{3}\right)$.

$$
\text { Let } \alpha=f . s_{0} \otimes \sqrt{\alpha_{1}}, \beta=g \cdot s_{0} \otimes \sqrt{\beta_{1}} \text { in } \Gamma_{P}\left([L] \otimes Q^{P}\right), \text { we define } \Upsilon(\alpha)=T f\left(x_{1}, x_{2}\right) s_{0}\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \otimes \sqrt{d x_{1} \wedge d x_{2}}
$$ and $\Upsilon(\beta)=T g\left(x_{2}, x_{3}\right) s_{0}\left(x_{2}, y_{2}, x_{3}, y_{3}\right) \otimes \sqrt{d x_{2} \wedge d x_{3}}$, sections in the $\Gamma_{F}\left([L] \otimes Q^{F}\right)$. Analogously if $\rho=h . t_{0} \otimes \sqrt{\rho_{1}}$ is a section in $\Gamma_{F}\left([L] \otimes Q^{F}\right)$, we define $\Upsilon^{-1}(\rho)=T^{-1} h . s_{0} \otimes \sqrt{\rho_{1}^{\prime}}$ a section in $\Gamma_{P}\left([L] \otimes Q^{P}\right)$, where $\sqrt{\rho_{1}^{\prime}}$ is the generator of Q^{P}. Now consider a new section of $[L]$ by

$$
\begin{aligned}
\Upsilon(\alpha) \odot \Upsilon(\beta)\left(x_{1}, y_{1}, x_{3}, y_{3}\right) & =\int_{\mathbb{R}} T f\left(x_{1}, x_{2}\right) T g\left(x_{2}, x_{3}\right) t_{0}\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \odot t_{0}\left(x_{2}, y_{2}, x_{3}, y_{3}\right) d x_{2} \otimes \sqrt{d x_{1} \wedge d x_{3}} \\
& =\int_{\mathbb{R}} T f\left(x_{1}, x_{2}\right) T g\left(x_{2}, x_{3}\right) d x_{2} t_{0}\left(x_{1}, y_{1}, x_{3}, y_{3}\right) \otimes \sqrt{d x_{1} \wedge d x_{3}}
\end{aligned}
$$

Then $\Upsilon^{-1}(\Upsilon(\alpha) \odot \Upsilon(\beta))=\left(f \star_{\hbar}^{0} g\right) . s_{0} \otimes \sqrt{\rho_{1}^{\prime}}$, where \star_{\hbar}^{0} is the Moyal-Weyl product, i.e.

$$
\left(u \star_{\hbar}^{0} v\right)(x)=\frac{1}{\hbar^{2 n}} \int_{\mathbb{R}^{2 n} \times \mathbb{R}^{2 n}} u(y) v(z) e^{-\frac{2 i}{\hbar} S^{0}(x, y, z)}
$$

where

$$
S^{0}(x, y, z)=\omega^{0}(x, y)+\omega^{0}(y, z)+\omega^{0}(z, x)
$$

In the case of the Bieliavsky plane(see [1]) we have that $\left(u \star \frac{B}{\hbar} v\right)\left(x_{0}\right)$ is:

$$
\frac{1}{\hbar^{2}} \int_{\mathbb{R}^{2} \times \mathbb{R}^{2}} \sqrt{\cosh \left(a_{0}-a_{1}\right) \cosh \left(a_{1}-a_{2}\right) \cosh \left(a_{2}-a_{0}\right)} e^{\frac{i}{\hbar}\left[l_{2} \sinh \left(a_{0}-a_{1}\right)+l_{1} \sinh \left(a_{2}-a_{0}\right)+l_{0} \sinh \left(a_{1}-a_{2}\right)\right]} u\left(x_{1}\right) v\left(x_{2}\right) d x_{1} d x_{2}
$$

The basic information mentioned above about the polarization and prequantization is to be found in [4] while additional information on the central polarization, central polarized sections and the product section \odot can be found in [2].

References

[1] P. BIELIAVSKY - Strict quantization of solvable symmetric spaces J. Sympl. Geom. 2 (2002),pp. 269-320.
[2] P. DE M. RIOS AND G.M. TUYNMAN - Weyl quantization from geometric quantization.A.I.P. Conf. Proc. 1079, 26-38 (2008).
[3] J .m. Gracia-bondia and J. c. Várilly - From geometric quantization to Moyal quantization, J. Math. Phys. 36 (1995), pp. 2691-2701.
[4] M. puta. Hamiltonian Mechanical Systems and Geometric Quantization, Kluwer Academic Publishers Dordrecht, Holland, 1993.
[5] A. Weinstein, Traces and Triangles in Symmetric Symplectic Spaces Cont. Math. 179, 261-270, (1994).
[6] A. WEInstein and p.xu, Extensions of symplectic groupoids and quantization J. reine angew. Math. 417, 159-189, (1991).

