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1 Introduction

Following on the quantization by groupoids program as a way to obtain an integral product which would deform

the multiplication of the Poisson algebra of functions on a symplectic manifold M as in Weinstein [5]. Me searches

a product of the general form

(fg)(z) =

∫
M×M

f(x)g(y)K(x, y, z)dxdy,

with a kernel K~, depending on the deformation parameter ~, of the kind K~(x, y, z) = ~dimM .exp(iS(x, y, z)/~),

eventually multiplied by an ”amplitude” A(x, y, z), where the function S(x, y, z) could be the symplectic area of

a surface whose boundary is the geodesic triangle for which the points x, y and z are the midpoints of its sides,

generalizing what is know for R2n.

In this present work, we will derive such a formula(Moyal-Weyl integral product) for R2 with the euclidian

connection and for R2 how a (non-metric) symplectic symmetric space(see [1] for details), by means of geometric

quantization of the symplectic groupoid M ×M and its prequantization as described in [6, 3].

2 Mathematical Results

Let (M,ω) be a symplectic manifold and let ~ ∈ R+ be a parameter. Let (Y, θ) be a prequantization of (M,ω/~),

meaning that π : Y →M is a principal S1-bundle equipped with a connection form θ whose curvature is ω/~. We

let L → M be the associated complex line bundle over M with connection ∇ and compatible hermitian structure.

It follows that we can identify Y with the subset of L of points of length 1. Now, consider a prequantization of

the pair groupoid M ×M the symplectic structure (ω,−ω). We let [L] → M ×M be the associated complex line

bundle with connection and compatible hermitian structure (see [2] for details).

Theorem 2.1. Let the symplectic groupoid G = R2 × R2
of coordinates (x1, y1;x2, y2), with which its symplectic

form may be written as

Ω = dx1 ∧ dy1 − dx2 ∧ dy2.

If P is a central (real)polarization and F is a trivial (real)polarization of the R2 × R2
such that F and P are

nontransverse. Then for the two sections α ∈ ΓF ([L]⊗QF ) and β ∈ ΓP ([L]⊗QP )

< α, β >h=< f, Tg >L2(R2), where

• In the case of the Euclidean plane, we have: Tg(x1, x2) = (2π~)−1
∫
R g(x1−x2

2 , ξ)exp(i ξ~ (x2 − x1))dξ

• In the case of the Bieliavsky plane(see [1] ) we have:

Tg(x1, x2) = (2π~)−1
∫
R
g(
x1 + x2

2
, ξ)exp(2i

ξ

~
sinh

(x2 − x1)

2
) cosh

1
2 (

(x2 − x1)

2
)dξ

• α = f.s0 ⊗
√
dα1 and β = g.t0 ⊗

√
dβ1, such that s0, t0 are nonvanishing section of L and

√
dα1,

√
dβ1 are

half-forms on R2 × R2
associated with P, F respectively.



• < ., . >h is the pairing of two sections t⊗√α1 ∈ ΓF ([L]⊗QF ), s⊗
√
β1 ∈ ΓP ([L]⊗QP ) given by

< t⊗√α1, s⊗
√
β1 >h=

∫
(t, s) <

√
α1,
√
β1 >PR, where (., .) is the Hermitian metric on [L] and < ., . >PR

is the pairing of half-forms.

Remark 2.1. If the symplectic groupoid G = R2 × R2
has coordinates (x1, y1;x2, y2) the polarization F above is

generated for {∂y1, ∂y2}, and the product groupoid is: (x1, y1;x3, y3) = (x1, y1;x2, y2).(x2, y2;x3, y3).

Let α = f.s0⊗
√
α1, β = g.s0⊗

√
β1 in ΓP ([L]⊗QP ), we define Υ(α) = Tf(x1, x2)s0(x1, y1, x2, y2)⊗

√
dx1 ∧ dx2

and Υ(β) = Tg(x2, x3)s0(x2, y2, x3, y3)⊗
√
dx2 ∧ dx3, sections in the ΓF ([L]⊗QF ). Analogously if ρ = h.t0 ⊗

√
ρ1

is a section in ΓF ([L] ⊗ QF ), we define Υ−1(ρ) = T−1h.s0 ⊗
√
ρ′1 a section in ΓP ([L] ⊗ QP ), where

√
ρ′1 is the

generator of QP . Now consider a new section of [L] by

Υ(α) } Υ(β)(x1, y1, x3, y3) =

∫
R
Tf(x1, x2)Tg(x2, x3)t0(x1, y1, x2, y2)� t0(x2, y2, x3, y3)dx2 ⊗

√
dx1 ∧ dx3

=

∫
R
Tf(x1, x2)Tg(x2, x3)dx2t0(x1, y1, x3, y3)⊗

√
dx1 ∧ dx3.

Then Υ−1(Υ(α) } Υ(β)) = (f ?0~ g).s0 ⊗
√
ρ′1, where ?0~ is the Moyal-Weyl product,i.e.

(u ?0~ v)(x) =
1

~2n

∫
R2n×R2n

u(y)v(z)e−
2i
~ S

0(x,y,z)

where

S0(x, y, z) = ω0(x, y) + ω0(y, z) + ω0(z, x).

In the case of the Bieliavsky plane(see [1] ) we have that (u ?B~ v)(x0) is:

1

~2

∫
R2×R2

√
cosh(a0 − a1) cosh(a1 − a2) cosh(a2 − a0)e

i
~ [l2 sinh(a0−a1)+l1 sinh(a2−a0)+l0 sinh(a1−a2)]u(x1)v(x2)dx1dx2

The basic information mentioned above about the polarization and prequantization is to be found in [4] while

additional information on the central polarization, central polarized sections and the product section � can be

found in [2].
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