GLOBAL SOLVABILITY FOR A CLASS OF INVOLUTIVE SYSTEMS

ADALBERTO P. BERGAMASCO \& CLEBER DE MEDEIRA \& SÉRGIO L. ZANI

1 Introduction

We consider a class of involutive systems of n vector fields on the torus $\mathbb{T}^{n+1} \simeq(\mathbb{R} / 2 \pi \mathbb{Z})^{n+1}$, given by

$$
\begin{equation*}
L_{j}=\frac{\partial}{\partial t_{j}}+\left(a_{j}(t)+i b_{j}\left(t_{j}\right)\right) \frac{\partial}{\partial x}, \quad j=1, \ldots, n \tag{1.1}
\end{equation*}
$$

where $a_{j} \in C^{\infty}\left(\mathbb{T}^{n} ; \mathbb{R}\right), b_{j} \in C^{\infty}\left(\mathbb{T}^{1} ; \mathbb{R}\right)$ and $(t, x)=\left(t_{1}, \ldots, t_{n}, x\right)$ are the coordinates on the torus \mathbb{T}^{n+1}.
We assume that the system (1.1) is involutive or equivalently that the 1-form $c=a+i b \in \bigwedge^{1} C^{\infty}\left(\mathbb{T}^{n}\right)$ is closed, where $a(t)=\sum_{j=1}^{n} a_{j}(t) d t_{j}$ and $b(t)=\sum_{j=1}^{n} b_{j}\left(t_{j}\right) d t_{j}$ are real 1-forms on \mathbb{T}^{n}. For further explanations about this concept see the book [4].

We obtain a complete characterization for the global solvability of this class in terms of Liouville forms and of the connectedness of all sublevel and superlevel sets of the primitive of pull-back of b in the minimal covering space.

2 Preliminaries and statement of the main results

We may write $c=c_{0}+d_{t} \mathcal{C}$ where \mathcal{C} is a complex valued smooth function of $t \in \mathbb{T}^{n}$ and $c_{0} \in \Lambda^{1} \mathbb{C}^{n} \simeq \mathbb{C}^{n}$. If $f=\left(f_{1}, \ldots, f_{n}\right) \in C^{\infty}\left(\mathbb{T}^{n+1} ; \mathbb{C}^{n}\right)$ and if there exists $u \in \mathcal{D}^{\prime}\left(\mathbb{T}^{n+1}\right)$ such that $L_{j} u=f_{j}, j=1, \ldots, n$, then $L_{j} f_{k}=L_{k} f_{j}, j, k=1, \ldots, n$ and

$$
\begin{equation*}
\hat{f}(t, \xi) e^{i \xi\left(c_{0} \cdot t+\mathcal{C}(t)\right)} \text { is exact when } \xi \in \mathbb{Z} \text { is such that } \xi c_{0} \in \mathbb{Z}^{n} \tag{2.2}
\end{equation*}
$$

where $\hat{f}(t, \xi) \doteq \sum_{j=1}^{n} \hat{f}_{j}(t, \xi) d t_{j}$ and $\hat{f}_{j}(t, \xi)$ denotes the Fourier transform with respect to x. Therefore, we define the following set

$$
\mathbb{E}=\left\{f=\left(f_{1}, \ldots, f_{n}\right) \in C^{\infty}\left(\mathbb{T}^{n+1} ; \mathbb{C}^{n}\right) ; L_{j} f_{k}=L_{k} f_{j} \text { and (2.2) holds }\right\}
$$

Definition 2.1. The system (1.1) is said to be globally solvable on \mathbb{T}^{n+1} if for each $f=\left(f_{1}, \ldots, f_{n}\right) \in \mathbb{E}$ there exists $u \in \mathcal{D}^{\prime}\left(\mathbb{T}^{n+1}\right)$ satisfying $L_{j} u=f_{j}, j=1, \ldots, n$.

We identify the 1-form $c_{0} \in \bigwedge^{1} \mathbb{C}^{n}$ with the vector $\left(c_{10}, \ldots, c_{n 0}\right)$ in \mathbb{C}^{n} consisting of the periods $c_{j 0}=a_{j 0}+i b_{j 0}$ where $a_{j 0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} a_{j}\left(0, \ldots, \tau_{j}, \ldots, 0\right) d \tau_{j}$ and $b_{j 0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} b_{j}\left(\tau_{j}\right) d \tau_{j}$. Also, we use the notation $a_{0}=\left(a_{10}, \ldots, a_{n 0}\right)$ and $b_{0}=\left(b_{10}, \ldots, b_{n 0}\right)$.

Given $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{R}^{N}$. If $\alpha \in \mathbb{Q}^{N}$, for each subset $J=\left\{j_{1}, \ldots, j_{m}\right\} \neq \emptyset$ of $\{1, \ldots, N\}$ we denote by q_{J} the smallest positive integer such that $q_{J}\left(\alpha_{j_{1}}, \ldots, \alpha_{j_{m}}\right) \in \mathbb{Z}^{m}$. When $J=\{1, \ldots, N\}$ we write $q_{*} \doteq q_{J}$; thus $q_{J} \leq q_{*}$ and q_{J} divides q_{*}.

If, otherwise, $\alpha \notin \mathbb{Q}^{N}$ we say that α is Liouville when there are a constant $C>0$ and a sequence $\left\{\left(\kappa_{l}, \xi_{l}\right)\right\}$ in $\mathbb{Z}^{N} \times \mathbb{Z}\left(\xi_{l} \geq 2\right)$ such that

$$
\max _{j=1, \ldots, N}\left|\alpha_{j}-\frac{\kappa_{l}^{(j)}}{\xi_{l}}\right| \leq \frac{C}{\left(\xi_{l}\right)^{l}}, \forall l \in \mathbb{N}
$$

In [2] the authors define the minimal covering of \mathbb{T}^{n} with respect to the 1-form b as the smallest covering space $\Pi: \mathcal{T} \rightarrow \mathbb{T}^{n}$ where the pull-back $\Pi^{*} b$ is exact. The minimal covering of \mathbb{T}^{n} is isomorphic to $\mathcal{T}=\mathbb{R}^{r} \times \mathbb{T}^{n-r}$
where $r=0,1 \ldots, n$ is the rank of the group of the periods of b. In the minimal covering the 1 -form $\Pi^{*} b$ has a global primitive B and since each b_{j} depends only on the coordinate t_{j} the function $B: \mathcal{T} \rightarrow \mathbb{R}$ is of the form $B(t)=\sum_{j=1}^{n} B_{j}\left(t_{j}\right)$.

The main result of this work is the following theorem:
Theorem 2.1. Let $J \doteq\left\{j_{1}, \ldots, j_{m}\right\}=\left\{j \in\{1, \ldots, n\}, b_{j} \equiv 0\right\}$ and B a primitive of $\Pi^{*} b$ in the minimal covering \mathcal{T}. With the above notation, the system (1.1) is globally solvable if and only if one of the following two situations occurs:
I) $J \neq \emptyset$ and $\left(a_{j_{1} 0}, \ldots, a_{j_{m} 0}\right) \notin \mathbb{Q}^{m}$ is non-Liouville.
II) The sublevels $\Omega_{s}=\left\{t \in \mathcal{T}, B(t)=\sum_{j=1}^{n} B_{j}\left(t_{j}\right)<s\right\}$ and superlevels $\Omega^{s}=\left\{t \in \mathcal{T}, B(t)=\sum_{j=1}^{n} B_{j}\left(t_{j}\right)>s\right\}$ are connected for every $s \in \mathbb{R}$ and, additionally, one of the following conditions holds:

1. $J=\emptyset, b$ is exact and $a_{0} \in \mathbb{Z}^{n}$;
2. $J \neq \emptyset, b$ is exact, $a_{0} \in \mathbb{Q}^{n}$ and $q_{J}=q_{*}$;
3. b is not exact.

In the proof of this theorem, we use the following important result:
Proposition 2.1. If b is not exact and \mathcal{T} denotes the minimal covering, then the sublevels $\Omega_{s}=\{t \in \mathcal{T}, B(t)=$ $\left.\sum_{j=1}^{n} B_{j}\left(t_{j}\right)<s\right\}$ and superlevels $\Omega^{s}=\left\{t \in \mathcal{T}, B(t)=\sum_{j=1}^{n} B_{j}\left(t_{j}\right)>s\right\}$ are connected for every $s \in \mathbb{R}$ if and only if there exists a function $b_{j} \not \equiv 0$ that does not change sign.

Theorem 2.1 provides the following interesting example: The system

$$
\left\{\begin{array}{l}
L_{1}=\frac{\partial}{\partial t_{1}}+\frac{1}{4} \frac{\partial}{\partial x} \\
L_{2}=\frac{\partial}{\partial t_{2}}+\left(\frac{1}{2}+i \sin \left(t_{2}\right)\right) \frac{\partial}{\partial x}
\end{array}\right.
$$

is globally solvable on \mathbb{T}^{3} since $q_{J}=q_{*}=4$, whereas

$$
\left\{\begin{array}{l}
L_{1}=\frac{\partial}{\partial t_{1}}+\frac{1}{2} \frac{\partial}{\partial x} \\
L_{2}=\frac{\partial}{\partial t_{2}}+\left(\frac{1}{4}+i \sin \left(t_{2}\right)\right) \frac{\partial}{\partial x}
\end{array}\right.
$$

is not globally solvable since in this case $q_{J}=2<4=q_{*}$.

References

[1] Bergamasco a. p. - Remarks about global analytic hypoellipticity, Trans. Amer. Math. Soc. 351 (1999), no. 10, 4113-4126.
[2] Bergamasco a. p., Kirilov a., nunes w. and Zani s. L. - On the global solvability for overdetermined systems, Trans. Amer. Math. Soc. to appear.
[3] Bergamasco a. p. and petronilho g. - Global solvability of a class of involutive systems, J. Math. Anal. Applic. 233 (1999), 314-327.
[4] berhanu s., cordaro p. and hounie j. - An Introduction to Involutive Structures, Cambridge University Press 2008.
[5] Cardoso F. and hounie J. - Global solvability of an abstract complex, Amer. J. Math. 112 (1990), 243-270.
[6] Treves F. - Study of a model in the theory of complexes of pseudodifferential operators, Ann. Math. (2) 104 (1976), 269-324.

