GLOBAL SOLVABILITY FOR A CLASS OF INVOLUTIVE SYSTEMS

ADALBERTO P. BERGAMASCO & CLEBER DE MEDEIRA & SÉRGIO L. ZANI

1 Introduction

We consider a class of involutive systems of n vector fields on the torus $\mathbb{T}^{n+1} \simeq (\mathbb{R}/2\pi\mathbb{Z})^{n+1}$, given by

$$L_j = \frac{\partial}{\partial t_j} + (a_j(t) + ib_j(t_j))\frac{\partial}{\partial x}, \quad j = 1, \dots, n,$$
(1.1)

where $a_j \in C^{\infty}(\mathbb{T}^n; \mathbb{R}), b_j \in C^{\infty}(\mathbb{T}^1; \mathbb{R})$ and $(t, x) = (t_1, \ldots, t_n, x)$ are the coordinates on the torus \mathbb{T}^{n+1} .

We assume that the system (1.1) is involutive or equivalently that the 1-form $c = a + ib \in \bigwedge^1 C^{\infty}(\mathbb{T}^n)$ is closed, where $a(t) = \sum_{j=1}^n a_j(t)dt_j$ and $b(t) = \sum_{j=1}^n b_j(t_j)dt_j$ are real 1-forms on \mathbb{T}^n . For further explanations about this concept see the book [4].

We obtain a complete characterization for the global solvability of this class in terms of Liouville forms and of the connectedness of all sublevel and superlevel sets of the primitive of pull-back of b in the minimal covering space.

2 Preliminaries and statement of the main results

We may write $c = c_0 + d_t \mathcal{C}$ where \mathcal{C} is a complex valued smooth function of $t \in \mathbb{T}^n$ and $c_0 \in \bigwedge^1 \mathbb{C}^n \simeq \mathbb{C}^n$. If $f = (f_1, \ldots, f_n) \in C^{\infty}(\mathbb{T}^{n+1}; \mathbb{C}^n)$ and if there exists $u \in \mathcal{D}'(\mathbb{T}^{n+1})$ such that $L_j u = f_j, j = 1, \ldots, n$, then $L_j f_k = L_k f_j, j, k = 1, \ldots, n$ and

$$\hat{f}(t,\xi)e^{i\xi(c_0\cdot t+\mathcal{C}(t))}$$
 is exact when $\xi\in\mathbb{Z}$ is such that $\xi c_0\in\mathbb{Z}^n$, (2.2)

where $\hat{f}(t,\xi) \doteq \sum_{j=1}^{n} \hat{f}_j(t,\xi) dt_j$ and $\hat{f}_j(t,\xi)$ denotes the Fourier transform with respect to x. Therefore, we define the following set

$$\mathbb{E} = \left\{ f = (f_1, \dots, f_n) \in C^{\infty}(\mathbb{T}^{n+1}; \mathbb{C}^n); L_j f_k = L_k f_j \text{ and } (2.2) \text{ holds} \right\}.$$

Definition 2.1. The system (1.1) is said to be globally solvable on \mathbb{T}^{n+1} if for each $f = (f_1, \ldots, f_n) \in \mathbb{E}$ there exists $u \in \mathcal{D}'(\mathbb{T}^{n+1})$ satisfying $L_j u = f_j, j = 1, \ldots, n$.

We identify the 1-form $c_0 \in \bigwedge^1 \mathbb{C}^n$ with the vector (c_{10}, \ldots, c_{n0}) in \mathbb{C}^n consisting of the periods $c_{j0} = a_{j0} + ib_{j0}$ where $a_{j0} = \frac{1}{2\pi} \int_0^{2\pi} a_j(0, \ldots, \tau_j, \ldots, 0) d\tau_j$ and $b_{j0} = \frac{1}{2\pi} \int_0^{2\pi} b_j(\tau_j) d\tau_j$. Also, we use the notation $a_0 = (a_{10}, \ldots, a_{n0})$ and $b_0 = (b_{10}, \ldots, b_{n0})$.

Given $\alpha = (\alpha_1, \ldots, \alpha_N) \in \mathbb{R}^N$. If $\alpha \in \mathbb{Q}^N$, for each subset $J = \{j_1, \ldots, j_m\} \neq \emptyset$ of $\{1, \ldots, N\}$ we denote by q_J the smallest positive integer such that $q_J(\alpha_{j_1}, \ldots, \alpha_{j_m}) \in \mathbb{Z}^m$. When $J = \{1, \ldots, N\}$ we write $q_* \doteq q_J$; thus $q_J \leq q_*$ and q_J divides q_* .

If, otherwise, $\alpha \notin \mathbb{Q}^N$ we say that α is Liouville when there are a constant C > 0 and a sequence $\{(\kappa_l, \xi_l)\}$ in $\mathbb{Z}^N \times \mathbb{Z}$ $(\xi_l \ge 2)$ such that

$$\max_{j=1,\dots,N} \left| \alpha_j - \frac{\kappa_l^{(j)}}{\xi_l} \right| \le \frac{C}{(\xi_l)^l}, \ \forall l \in \mathbb{N}.$$

In [2] the authors define the *minimal* covering of \mathbb{T}^n with respect to the 1-form b as the smallest covering space $\Pi : \mathcal{T} \to \mathbb{T}^n$ where the pull-back $\Pi^* b$ is exact. The minimal covering of \mathbb{T}^n is isomorphic to $\mathcal{T} = \mathbb{R}^r \times \mathbb{T}^{n-r}$ where r = 0, 1, ..., n is the rank of the group of the periods of b. In the minimal covering the 1-form $\Pi^* b$ has a global primitive B and since each b_j depends only on the coordinate t_j the function $B : \mathcal{T} \to \mathbb{R}$ is of the form $B(t) = \sum_{j=1}^n B_j(t_j)$.

The main result of this work is the following theorem:

Theorem 2.1. Let $J \doteq \{j_1, \ldots, j_m\} = \{j \in \{1, \ldots, n\}, b_j \equiv 0\}$ and B a primitive of $\Pi^* b$ in the minimal covering \mathcal{T} . With the above notation, the system (1.1) is globally solvable if and only if one of the following two situations occurs:

- I) $J \neq \emptyset$ and $(a_{j_10}, \ldots, a_{j_m0}) \notin \mathbb{Q}^m$ is non-Liouville.
- II) The sublevels $\Omega_s = \{t \in \mathcal{T}, B(t) = \sum_{j=1}^n B_j(t_j) < s\}$ and superlevels $\Omega^s = \{t \in \mathcal{T}, B(t) = \sum_{j=1}^n B_j(t_j) > s\}$ are connected for every $s \in \mathbb{R}$ and, additionally, one of the following conditions holds:
 - 1. $J = \emptyset$, b is exact and $a_0 \in \mathbb{Z}^n$;
 - 2. $J \neq \emptyset$, b is exact, $a_0 \in \mathbb{Q}^n$ and $q_J = q_*$;
 - 3. b is not exact.

In the proof of this theorem, we use the following important result:

Proposition 2.1. If b is not exact and \mathcal{T} denotes the minimal covering, then the sublevels $\Omega_s = \{t \in \mathcal{T}, B(t) = \sum_{j=1}^n B_j(t_j) < s\}$ and superlevels $\Omega^s = \{t \in \mathcal{T}, B(t) = \sum_{j=1}^n B_j(t_j) > s\}$ are connected for every $s \in \mathbb{R}$ if and only if there exists a function $b_j \neq 0$ that does not change sign.

Theorem 2.1 provides the following interesting example: The system

$$\begin{cases} L_1 = \frac{\partial}{\partial t_1} + \frac{1}{4} \frac{\partial}{\partial x} \\ L_2 = \frac{\partial}{\partial t_2} + (\frac{1}{2} + i\sin(t_2)) \frac{\partial}{\partial x} \end{cases},$$

is globally solvable on \mathbb{T}^3 since $q_J = q_* = 4$, whereas

$$\begin{cases} L_1 = \frac{\partial}{\partial t_1} + \frac{1}{2} \frac{\partial}{\partial x} \\ L_2 = \frac{\partial}{\partial t_2} + (\frac{1}{4} + i\sin(t_2)) \frac{\partial}{\partial x} \end{cases},$$

is not globally solvable since in this case $q_J = 2 < 4 = q_*$.

References

- BERGAMASCO A. P. Remarks about global analytic hypoellipticity, Trans. Amer. Math. Soc. 351 (1999), no. 10, 4113–4126.
- [2] BERGAMASCO A. P., KIRILOV A., NUNES W. AND ZANI S. L. On the global solvability for overdetermined systems, Trans. Amer. Math. Soc. to appear.
- BERGAMASCO A. P. AND PETRONILHO G. Global solvability of a class of involutive systems, J. Math. Anal. Applic. 233 (1999), 314–327.
- [4] BERHANU S., CORDARO P. AND HOUNIE J. An Introduction to Involutive Structures, Cambridge University Press 2008.
- [5] CARDOSO F. AND HOUNIE J. Global solvability of an abstract complex, Amer. J. Math. 112 (1990), 243–270.
- [6] TREVES F. Study of a model in the theory of complexes of pseudodifferential operators, Ann. Math. (2) 104 (1976), 269–324.