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1 Introduction

We consider a class of involutive systems of n vector fields on the torus Tn+1 ' (R/2πZ)n+1, given by

Lj =
∂

∂tj
+ (aj(t) + ibj(tj))

∂

∂x
, j = 1, . . . , n, (1.1)

where aj ∈ C∞(Tn;R), bj ∈ C∞(T1;R) and (t, x) = (t1, . . . , tn, x) are the coordinates on the torus Tn+1.

We assume that the system (1.1) is involutive or equivalently that the 1-form c = a+ ib ∈
∧1

C∞(Tn) is closed,

where a(t) =
∑n
j=1 aj(t)dtj and b(t) =

∑n
j=1 bj(tj)dtj are real 1-forms on Tn. For further explanations about this

concept see the book [4].

We obtain a complete characterization for the global solvability of this class in terms of Liouville forms and of

the connectedness of all sublevel and superlevel sets of the primitive of pull-back of b in the minimal covering space.

2 Preliminaries and statement of the main results

We may write c = c0 + dtC where C is a complex valued smooth function of t ∈ Tn and c0 ∈
∧1 Cn ' Cn.

If f = (f1, . . . , fn) ∈ C∞(Tn+1;Cn) and if there exists u ∈ D′(Tn+1) such that Lju = fj , j = 1, . . . , n, then

Ljfk = Lkfj , j, k = 1, . . . , n and

f̂(t, ξ)eiξ(c0·t+C(t)) is exact when ξ ∈ Z is such that ξc0 ∈ Zn, (2.2)

where f̂(t, ξ)
.
=
∑n
j=1 f̂j(t, ξ)dtj and f̂j(t, ξ) denotes the Fourier transform with respect to x. Therefore, we define

the following set

E =
{
f = (f1, . . . , fn) ∈ C∞(Tn+1;Cn); Ljfk = Lkfj and (2.2) holds

}
.

Definition 2.1. The system (1.1) is said to be globally solvable on Tn+1 if for each f = (f1, . . . , fn) ∈ E there

exists u ∈ D′(Tn+1) satisfying Lju = fj, j = 1, . . . , n.

We identify the 1-form c0 ∈
∧1 Cn with the vector (c10, . . . , cn0) in Cn consisting of the periods cj0 = aj0 + ibj0

where aj0 = 1
2π

∫ 2π

0
aj(0, . . . , τj , . . . , 0)dτj and bj0 = 1

2π

∫ 2π

0
bj(τj)dτj . Also, we use the notation a0 = (a10, . . . , an0)

and b0 = (b10, . . . , bn0).

Given α = (α1, . . . , αN ) ∈ RN . If α ∈ QN , for each subset J = {j1, . . . , jm} 6= ∅ of {1, . . . , N} we denote by

qJ the smallest positive integer such that qJ(αj1 , . . . , αjm) ∈ Zm. When J = {1, . . . , N} we write q∗
.
= qJ ; thus

qJ ≤ q∗ and qJ divides q∗.

If, otherwise, α /∈ QN we say that α is Liouville when there are a constant C > 0 and a sequence {(κl, ξl)} in

ZN × Z (ξl ≥ 2) such that

max
j=1,...,N

∣∣∣αj − κ
(j)
l

ξl

∣∣∣ ≤ C

(ξl)l
, ∀l ∈ N.

In [2] the authors define the minimal covering of Tn with respect to the 1-form b as the smallest covering space

Π : T → Tn where the pull-back Π∗b is exact. The minimal covering of Tn is isomorphic to T = Rr × Tn−r



where r = 0, 1 . . . , n is the rank of the group of the periods of b. In the minimal covering the 1-form Π∗b has a

global primitive B and since each bj depends only on the coordinate tj the function B : T → R is of the form

B(t) =
∑n
j=1Bj(tj).

The main result of this work is the following theorem:

Theorem 2.1. Let J
.
= {j1, . . . , jm} = {j ∈ {1, . . . , n}, bj ≡ 0} and B a primitive of Π∗b in the minimal covering

T . With the above notation, the system (1.1) is globally solvable if and only if one of the following two situations

occurs:

I) J 6= ∅ and (aj10, . . . , ajm0) /∈ Qm is non-Liouville.

II) The sublevels Ωs = {t ∈ T , B(t) =
∑n
j=1Bj(tj) < s} and superlevels Ωs = {t ∈ T , B(t) =

∑n
j=1Bj(tj) > s}

are connected for every s ∈ R and, additionally, one of the following conditions holds:

1. J = ∅, b is exact and a0 ∈ Zn;

2. J 6= ∅, b is exact, a0 ∈ Qn and qJ = q∗;

3. b is not exact.

In the proof of this theorem, we use the following important result:

Proposition 2.1. If b is not exact and T denotes the minimal covering, then the sublevels Ωs = {t ∈ T , B(t) =∑n
j=1Bj(tj) < s} and superlevels Ωs = {t ∈ T , B(t) =

∑n
j=1Bj(tj) > s} are connected for every s ∈ R if and only

if there exists a function bj 6≡ 0 that does not change sign.

Theorem 2.1 provides the following interesting example: The system{
L1 = ∂

∂t1
+ 1

4
∂
∂x

L2 = ∂
∂t2

+ ( 1
2 + i sin(t2)) ∂

∂x

,

is globally solvable on T3 since qJ = q∗ = 4, whereas{
L1 = ∂

∂t1
+ 1

2
∂
∂x

L2 = ∂
∂t2

+ ( 1
4 + i sin(t2)) ∂

∂x

,

is not globally solvable since in this case qJ = 2 < 4 = q∗.
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