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USP - Universidade de São Paulo

December 1-2, 2011

Riemann Hypothesis and Physics
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The goal of this work is to discuss on the main ingredients that lead to the postulation of the Riemann Hypothesis.

Our intention is to fill up the gap that makes that only a small portion of the mathematics community knows what

makes the Riemann Hypothesis plausible, even though it is today one of the main open problems. We also present

some interesting mathematical results related to the Riemann zeta function and the Riemann hypothesis, such as

the Prime Number Theorem, as well as their relationships with physical models. The material covered here is far

from being exhaustive. It is written in a way to allow undergraduate students in the field of sciences to understand

it with little work. We begin with the complex variable Riemann zeta function

ζ(s) =

+∞∑
n=1

1

ns
, s = σ + it, σ > 1, t ∈ R , (1)

which has many other representaions and extends to a meromorphic function of s ∈ C, still denoted by ζ(s), with

a simple pole at s = 1 and Res(ζ, 1) = 1. It obeys the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s) , s ∈ C−{1} , (2)

where Γ is the Euler gamma function. Due to the sin
(
πs
2

)
factor, Eq. (2) equation shows that ζ(s) has simple

zeroes at s = . . . ,−6,−4,−2. These are the trivial zeroes of ζ(s). From Eq. (1), we can also prove that ζ(s) 6= 0

for s = σ+ it, σ > 1, t ∈ R. The same holds for s = 0. Hence, the nontrivial zeroes of ζ may only lay in the critical

strip S := {s ∈ C : 0 < σ < 1}. Riemann found three of these zeroes, and the Riemann Hypothesis states that

the only nontrivial zeroes in S are locate on the critical line L := {s ∈ C : σ = 1
2}. More than 1.5 billion zeroes

were found with the help of numerical methods by Odlyzko.

It turns out that ζ(s) has important applications in the analytic number theory. For example, ζ(s) is used an

important tool to prove the limit known as the Prime Number Theorem (P denotes the set of prime numbers)

lim
x→+∞

π(x) lnx

x
= 1 , (3)

where π(x) :=
∑
p∈P:p≤x 1 is related to the known von Mangoldt function, which gives a counting function to the

prime numbers. The last result implies that ζ(s) is a good counting factor for the density of prime numbers in R.

To show Eq. (3), we need an analytical study of the nontrivial zeroes of ζ. In doing this, it is convenient to use an

entire function the zeroes of which coincide with the nontrivial zeroes of ζ(s). This function given by

ξ(s) :=
1

2
s(s− 1)π−

s
2 Γ
(s

2

)
ζ(s) . (4)

and is an entire function of order one, i.e. for any ε > 0, it satisfies

|ξ(s)| = Oε(exp(|s|1+ε)), s ∈ C , (5)

and also the relations

ξ(s) = ξ(1− s) , ξ(s) = ξ(s) ; for all s ∈ C . (6)

The Riemann function and the Riemann Hypothesis are also relevant in other areas of mathematics. For

example, ζ(s) is central to establish a connection with the spectral theory known as the Hilbert-Pólya conjecture,

which states that the real part of the non-trivial zeroes of ζ(s) are eigenvalues of a certain Hermitian operators.
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Classical Mathematical Results
In our work, among others, we review and prove the following important known results regarding ζ(s). Below,

B(0; 1) denotes the unitary complex ball centered at the origin, ∂B(0; 1) its boundary and H(B(0; 1)) the set of

entire complex functions on it. ρ is a nontrivial zero of ζ(s).

Teorema 1. There are infinitely many nontrivial zeroes of ζ(s).

Proof: As the non-trivial zeroes of ζ(s) are the zeroes of the entire function ξ, then there exists a countable number

of zeroes, so we just have to prove that a countable infinite number of nontrivial zeroes. Suppose that there are a

finite number of nontrivial zeroes ρ1, ρ2, . . . , ρm then
∑
ρ

1
|ρ| =

∑m
k=1

1
|ρk| < ∞, then as ξ is an entire function of

order one ξ(s) = expO(|s|). On the other hand, by Stirling’s formula, for x ∈ R, we have log Γ
(
x
2

)
∼ x

2 log x
2 , also

limx→+∞ ζ(x) = 1 then in (4) we have ξ(x) ∼ 1
2x(x−1)e

x
2 log x

2π , but this contradicts the fact that ξ(s) = expO(|s|).

Teorema 2. The nontrivial zeroes of ζ(s) are symmetric with respect to the critical line and the real axis.

Proof: The statement is a consequence of (6).

Teorema 3. The Riemann hypothesis is true if and only if φ′

φ ∈ H(B(0; 1)), where φ(s) := ξ
(

s
s−1

)
.

Proof: Since that s 7→ s
s−1 , maps the critical line L in ∂B(0; 1), {s ∈ C : 0 < σ < 1} in B(0; 1) and the Theorem

2, we have the Riemann hypothesis is true if the zeroes of φ are located in ∂B(0; 1), then
∮
∂B(0;1)

φ′(s)
φ(s) ds = 0,

consequently φ′

φ ∈ H(B(0; 1)). The converse is obvious.

Teorema 4. If the Riemann hypothesis is true then the series
∑
ρ

1
ρ , converges conditionally,

Proof: As we saw in the proof of Theorem 1,
∑
ρ |1/ρ| diverges. Now if we consider the representation of ξ given by

the following product (see [1]) ξ(s) = ξ(0)
∏
ρ

(
1− s

ρ

)
to calculate the Taylor series of φ′

φ , we have the coefficient

of the independent term is
∑
ρ

1
ρ <∞.

Riemann Hypothesis and Physics
Now, as a simple among the various available examples, we show some connections between the Riemann Zeta

function and a statistical physics model. We take here the set P = {p1 = 2 < p2 = 3 < p3 = 5, p4 = 7, . . .}
of prime numbers to be increasingly ordered. Now consider a bosonic gas in which the energies of each state are

given as follows E1 = log p1, E2 = log p2, . . .. Using the formalism of second quantization we assume each state

can be labeled by a natural number n, and we denote it by ψn. Now, by the fundamental theorem of arithmetics,

every natural number may be decomposed into a product of elements of P. Physically what we mean is that if

n = pα1
1 · · · pαrr , then in ψn we have αj particles with energy Ej , where j = 1, 2, . . . , r; then the total energy of the

state ψn is En = α1 log p1 + · · · + αr log pr = log n, for some real constants αj . Consequently, the great partition

function of a gas of particles in these states is given by (k is the Boltzmann constant, T is the temperature)

QB(T ) =
∑+∞
n=1 exp

(
− EnkT

)
= ζ

(
1
kT

)
. From this result, we see that the zeroes of ζ can be interpreted as points

of phase transitions of this Primon Gas, and apply standard physics techniques and results to try to show the

Riemann hypothesis. If, otherwise, we consider a fermionic gas, using the Pauli exclusion principle, the great

partition function becomes QF (T ) =
∑+∞
n=1 |µ(n)|n−1/kT (µ is the Möbius function), which can be of help in this

task, as well.
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